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Fedorov and Fomin [i] derived the conditions for the existence of a combination discon- 
tinuity (CMD) in a gas suspension, i.e., realization of the situation in which certain flow 
parameters become discontinuous on a line in the space (x, t) in the absence of particulate 
mass flow. The same study also presented a brief overview of investigations in the mechan- 
ics of heterogeneous media and gasdynamics in channels with an abruptly changing geometry. 
Below, we study the structure of a CMD in gas suspensions with allowance for radiation pres- 
sure from particles. Here, as in [i], the phrase "structure of a CMD" is taken to imply 
the existence of a flow of gas which encounters a cloud of particles and is slowed or ac- 
celerated in it. 

A finite cloud of small particles dispersed in a unidimensional space will be examined. 
Let a gas flow into this cloud. The parameters of the gas undergo discontinuities at the 
edge of the cloud, with the gas then passing through a collection of particles with a vari- 
able concentration. The gas leaves the cloud a certain finite distance from the place where 
it entered. We will study the given flow on the basis of a model from the mechanics of het- 
erogeneous media. The equations describing the CM/) are taken from [i] for the case when 
random motion of the particles is ignored. In the given variant, these conditions appear as 
follows when written in the corresponding coordinate system 

[piu~] = O, i = i , 2 ,  p~ = p~m2, Pa = cons t ,  
! m r [ q u 1 ~ -  mlp]  = [tulip',  [c2u2 + m2p + P2] = [ 2]P , ( 1 )  

m l - l -  m 2 - -  1, p = a2p, ci = p iui ,  c2 = O, u~ = O, u 1 = u .  

Here, u i and m i are the velocity and volume concentration of the i-th phase; i = I denotes 
the gas; i = 2 denotes the particles; p is the pressure of the gas; P2 is the random motion 

~(o+s 

of the particlesp'=lim [ p~,t)6(x--xo(t))dx is the pressure acting along the front of the 

CMD. The equations of mass and momentum conservation for each phase are written as follows 
in the coordinate system $ = x - Dt: 

c l u + m l p  = - - m f f ,  p = a :p ,  c 1 = pmlt~ : PoUo, 

(2) 
p 2 + m e p  = md, m~ + m2 = t , / =  p2c9 Re u/24rst m~, r s t =  2r~22/9 ~ 

(the dot denotes the derivatives d/d$). Then the formulation of the problem of determining 
the structure of a CMD in a gas suspension reduces to the boundary-value problem: find func- 
tions (p, u, p, m2, P2) = r and constant L in the region R~{R~: ~ e (0, L)}, which satisfy 
Eqs. (2) and boundary conditions (I) in this region at g = 0, as well as the condition 

M = M f a t  ~ = L .  ( 1 ' )  

We r e d u c e  p r o b l e m  ( 1 ) ,  ( t ' ) ,  ( 2 )  t o  t h e  s t u d y  o f  a b o u n d a r y - v a l u e  p r o b l e m  f o r  a n  o r d i n -  
a r y  differential equation. Equations (2) have the momentum conservation law for the mixture 
as awhole: p+clu+p2 = c2 =p0 +clu0. Using a corollary of the continuity equation for the 
gas written in the form p = a2cl/mlu = c 2 - clu - pom2, we find dm2/d$ = !du/dg!(ml( p - clu)/ 
(p + mlpo)), ~ = -clu - po~2. It then follows from the last result that p = - ux(clu p + 
ppoml)/u(p + ml). Having inserted this expression into the first equation of (2), we obtain 

M ~ M ~ P2 cDRe 
~ 24 M, ( 3 )  
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TABLE 1 TABLE 2 

ml Lm Lmm~- Lm 5Io 

0.9967 
0,9970 
0,99927 

0,302 
0,t20 

t ,46 
3,78 

32,i 

442,0 O,i 
0,2 

t259 0,3 
4585,9 0,4 

0,5 

0d33 25,7 
0,25t 6,05 
0,40i t ,68 
0,554 0,538 
O,8O2 O,O57 

where BI(M) = (m2P + ml)/(P + m~); P = P/Po; ~2 = ml/(ml + m2P). 

Let Po + O, so that P + ~, B I + m2, a § 0 and (3) becomes the equation c16 = m2f. The 
same equation was used in [i] to describe a CMD in a mixture without random particle pres- 
sure. 

We will rewrite the boundary conditions in problem (I), (i'), (2) in terms of the func- 
tion M, which means that we obtain the Hugoniot curve for the CMD (with ~ = 0): 

H (M, Mo) = mxMoM ~ + m~M (m2po - -  (1 + M~)) + M o - -  AM2,+ BM + C = 0 ( 4 )  

(Po = Po/O0 a2, M0 = u0/a)- The two branches of the solution of Eq. (4) have the form M • = 

(-B • /~)/2A (A, B, and C are coefficients of the quadratic trinomial, while the discrimin- 
ant D = m1[(m2p o - ~)2 _ (m2p ~ _ ~)2m2 _ 4M02], a = 1 + M02). The function D(ml)/m I is a 
third-degree polynomial relative to m I. Its three roots, found for Po >> ~, have the form 
ml • = 1 - (i • MD~)2/po, ml ~ = 4M02/po. It follows from this that, since D(m I = i) > O, 
the roots of Eq. (4) exist when 

mt ~ (m~, m~)=  It, mt ~ (roT, i )  = Iv  m,------roT. (5)  

Here, we easily see that in the interval I z the values of M • are negative, i.e., do not 
yield a physically correct solution. We will take a closer look at M • in the interval 12. 
Let D = O, so that M• = M, = ml -I/2 and, at the point of rotation when Po >> i, M, = i+m2/2 > 
i. In the same approximation, a ~ 1 - m2P, from which M,/a = 1 + m2(0.5 + P) > i. Also, at 
m i = I, M • = M0 -I, M 0. Choosing M 0 < i, we find that only the quantitative characteristics 
change, due to the continuity of the function Mt(ml). Here, at a certain m** e (m,, i), M-/ 
a = i, i.e., the curve of final states beyond the CMD has properties similar to those which 
exist when Po = 0 [i]. This situation remains in force when M 0 > 1 and leads to the follow- 
ing. 

THEOREM. A positive solution to Eq. (4), determining the parameters of the gas flow 
beyond the front of the CMD, exists in the region m I e 12 in the form of upper (supersonic) 
and lower (mixed) branches. Here, the parameters beyond the CMD front are supersonic on the 
lower branch when m I e (m,, m**) = I22, are subsonic when ml e (m**, i) = I21, and are sonic 
(M /~ = i) when m I = m**. 

Thus, it has been shown that when 1 g m I ~ m, = 1 - (i - M0=)2/po, conditions (4) for 
a CMD make it possible to find the value of the function M = M(ml) beyond the front of the 
CMD. Also adding the condition M = Mf on the free boundary $ = L, we see that problem (I)- 
(2) is reduced to boundary-value problem (3), (i'), (4). Here, the function m I is found 
from the conservation integrals as m I = mz(M). 

Let us examine certain aspects of the qualitative behavior of problem (3), (i'), (4). 
Let M 0 < I, m I e (m,n, i). Then the value.of M belonging to the lower branch of the solu- 
tion of (4) is less than I. As a result, M > O, and a subsonic gas flow with friction is 
accelerated to the speed of sound. Here, ml is found from the equation ml2Mpo + miM(l + 
M02 - M02M - Po) - M0 = O. In this case, we also determine the length of the cloud of par- 
ticles L and the point at which M = Mf. It should be noted that there is an infinite veloc- 
ity gradient at the flow point where Mf = I. 

Similar motion of a gas was studied in [2] in a description of flow in a tube with al- 
lowance for friction and heat input. In particular, the author introduced the notion of the 
maximum corrected length of tube for a certain initial state. 
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Following [2], we will determine the maximum length of a cloud of particles L m as the 
size for which Mf = i on the rear edge. In this case, if M 0 < i, mz e (m**, i) = 121, then 
a subsonic regime is realized on the approach to the rear boundary of the cloud at L < L m 

and a sonic regime is realized at L = L m. 

Generally speaking, it is also possible to construct a formal solution for M0 < I, m~ 
122 , when M > I and belongs to the lower branch. However, here it is necessary to make an 
artificial assumption on the functioning of the leading edge of the CMD as a de Laval nozzle. 
The latter converts a continuous subsonic flow into a subcritical flow. By virtue of (3), 
M < O, and the flow is slowed to subsonic speed (or to supersonic speed if L < Lm). Special 
attention should be given to the case L > L m, since it is not realized under steady-state 

conditions. 

At M0 < i, ml ~ 12, but M > I, i.e., M belongs to the upper branch of the CMI). The so- 
lution M = M(x) is described by a decreasing function in this case. We introduce L, (the 

cloud length at which the final value is M = M,). Then when L < L,, Mf > M,, and when L = 
L,, M = M,. However, here - as before - the problem is to verify the transition from M 0 < 1 
on the left edge of the CMD to M > I on its leading edge. This transition is unstable. 

Let M 0 > i. We have subsonic flow at the exit from the cloud when m~ e 12z , L < L m and 
sonic flow when L = L m. If ml e 122 , beginning with M 0 > i at the entry to the confined 
space (gas suspension) a supersonic flow undergoes deceleration to M e (i, M,) (M, ~ M• 
At L < L m the flow is transformed at the exit from the cloud into a supersonic flow of lower 
velocity, but at L = L m it is changed to a sonic flow. If ml e (m,, i) and M belongs to the 
upper branch, then L, is determined as above. When L < L,, the final state Mf e M,. 

Let us examine an approximate analytic solution to the problem of the structure of flow 

in a CMD. Let M0 = 0.i, P22 = 2'103 kg/m~, aa = i00 m/sec, po = P22ao 2 = 2"107 N/m 2, P0 = 
Pzl.0 = i kg/m 3, a = 300 m/sec, P0 = P0 a2 = 9"i0~ N/m=, Po/P0 = 2.22"102 >> i, m, ~ 0.9967, 
We choose m I e 121. Since the solution for ml and m 2 changes within narrow limits, we can 
put m z ~ I, m 2 - m=0 and for CDRe = 24 obtain m=x = In(M/M) + (~-2 _ M-=)/2. 

Table I shows data on L m with M0 = 0.i for different m z at the inlet to a CMD. It is 
evident that allowance for random particle motion leads to a substantial (compared to [i]) 
increase in the length of the cloud that can propagate steadily into the gas flow. This 
length is greater, the lower the concentration of particles. 

It is interesting to examine the effect of initial flow velocity on L m with a fixed 
volume concentration ml at the entry to the cloud. The data in Table 2 (for ml = 0.999) 
shows a decrease in the corrected length of the cloud L m with an increase in M 0. This is 

to be expected, due to the increase in M0. 

Let us discuss the results in the general case m z ~ i, m 2 ~ m20. When performing numer- 
ical calculations, in addition to the above data we used the following values for the con- 
stants: ~ = 2'10-5, ~st = 2R2p22/9~, D0 = p0x0/a, x0 = a~s t (the zero subscript denotes pa- 
rameters used in obtaining dimensionless values). 

Figures i and 2 show the relations for the Mach number behind the CMD front when Pc = 
I02, M 0 > i, and M0 < i, respectively. It can be seen that a supersonic incident flow is 
characterized by greater contraction of the state curve beyond the front. The boundary 
point m,, defining the region of existence of real states beyond the CMD, turned out to be 
higher in the asymptotic representation ml = I - (I - M02)=/po. It follows from this that 
the limiting value of volumetric particle concentration at which steady flow exists decreas- 

es with an increase in particle velocity. 
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Let us attempt to provide a physical interpretation for the upper and lower branches 
of the solution M(ml). Let M 0 > i, i.e., suppose that a supersonic flow enters a dust-bear- 
ing space. The cross section within which the gas flows decreases. By making a gasdynamic 
analogy with pipe flow, we can establish that flow velocity also decreases in this case. 
The supersonic flow decelerates and the subsequent motion of the mixture takes place in ac- 
cordance with (4). Illustrative of this type of flow is the Mach-number distribution along 
the cloud for Pc = i0, R = 10 -4 m (particle radius), m10 = 0.9758 (Fig. 3, lines 1--3 for 
M0 = 1.7, 1.9, 2.1). Delayed at the edge of the CMD, the gas continues to slow to the veloc- 
ity u, = i/s at the exit from the cloud where ~ = L, -- 0, while the concentration of gas 
decreases to m I = m,. If m i = m10 and we take the Cauchy data for the lower branch, then 
the gas in the shock wave attached to the edge of the CMD slows to H < 1 before accelerating. 
It should be noted that a qualitatively similar type of flowing gas suspension was seen in 
[3]. The author established a limiting particle concentration m 2 = 0.01 for bronze and or- 
ganic glass (the analog of the quantity m, in our model). At this concentration, individual 
shock waves near the particles merge and form an attached suspended shock ahead of the par- 
ticle cloud. If Mf = 0.82 (as shown in Fig. 4, where the notation conforms to Fig. 3), then 
the corrected length of the cloud increases with an increase in the initial velocity of the 
gas. In this case, the volume concentration of gas decreases to m** if Mf = I. 

We studied the effect of random particle velocity a o on the flow pattern in the relaxa- 
tion zone. It was found that an increase in a o leads to a decrease in cloud length L m (Fig. 
5,_ line 1 for M0 = 0.i, mi0 = 0.9919, M = 0.1098, Po = 102, line 2 for Po = i0, m10 = 0.9943, 
M = 0.240). In fact, an increase in po is accompanied by a decrease in the limiting particle 
concentration m2, and the size of these particles. This in turn results in a decrease in 
dissipation of momentum on the particles, i.e., the gas accelerates to the speed of sound 
more rapidly. A similar effect is seen from an increase in particle radius R: cloud width 
decreases with an increase in radius. This can be attributed to the fact that there is an 
increase in acceleration of the flow in a cloud with large values of particle radius. This 
can readily be seen from the estimate a = a0(l + 6Re2/S), where a is the acceleration of the 
gas and a 0 is its characteristic value. For the Klyachko formula used as an example, we 
took a drag coefficient c D = 24(1 + 6Re2/3)/Re. This situation is illustrated by the data 
in Fig. 6 (M0 = 0.i, M = 0.2089, Po = i0, m10 = 0.9514, lines I-3 for R = 10 -4 , 10 -5 10 -6 ) 
Figure 7 shows distributions of gas velocity in a cloud for different values of the Stokes 
drag coefficient c D. Also shown is data from [4] (lines i, 2). The considerable length of 
the cloud in the case of the Stokes law for flow about a particle is due to its lesser ac- 
celeration during the flow process - as was explained above in our examination of the effect 
of variation of the radius. 

It is interesting to examine the distribution of particle concentration in the cloud 
depicted in Fig. 8 (M0 = 0.i, M = 0.1098, Po = I0) for R = 10 -4 , i0 -s, i0 -6 (lines 1-3). 
Flow in this case is similar to the gas flow in the subsonic region of a de Laval nozzle. 
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In fact, the subsonic flow beyond the CMD at M < 1 is accelerated by the flow of gas into 
the convergent section, since the concentration of particles increases by the end of the 
cloud. There is a fairly abrupt change in the through section of the gas at R = 10 -4 m, 
with a subsequent decrease in particle radius leading to smoothing of the particle concen- 
tration profile. 

There is a different distribution of particles in the cloud if the incoming flow is 
supersonic (m10 = 0.9757, R = 10 -4 = _ , Po = i0, M0 = 1.7, M = 0.72, M0 = 1.9, M = 0.6, M0 
2.1, M = 0.53) and the flow behind the edge is subsonic. This situation actually corre- 
sponds to an attached shock wave. In the given case, the particles in the cloud undergo a 
fair degree of consolidation. Meanwhile, with an increase in M0, the cloud grows and the 
particles are compacted toward the cloud's end. 

Thus, a mathematical model has been proposed to describe the structure of the CMD in 
a gas suspension with allowance for the random motion of the particles. Classifications 
have been given for stable and unstable types of steady flows of gas suspensions in a CMD, 
and corresponding numerical examples have been provided. The empirically observed fact 
of the existence of a flow with an attached shock wave on a particle cloud was cited as 
an analog of one of the possible regimes. 
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